Showing posts with label multiple alignment. Show all posts
Showing posts with label multiple alignment. Show all posts

Monday, August 22, 2011

Comparative analysis of algorithms for next-generation sequencing read alignment



Abstract

Motivation: The advent of next-generation sequencing (NGS) techniques presents many novel opportunities for many applications in life sciences. The vast number of short reads produced by these techniques, however, pose significant computational challenges. The first step in many types of genomic analysis is the mapping of short reads to a reference genome, and several groups have developed dedicated algorithms and software packages to perform this function. As the developers of these packages optimize their algorithms with respect to various considerations, the relative merits of different software packages remain unclear. However, for scientists who generate and use NGS data for their specific research projects, an important consideration is choosing the software that is most suitable for their application.
Results: With a view to comparing existing short read alignment software, we develop a simulation and evaluation suite, SEAL, which simulates NGS runs for different configurations of various factors, including sequencing error, indels, and coverage. We also develop criteria to compare the performances of software with disparate output structure (e.g., some packages return a single alignment while some return multiple possible alignments). Using these criteria, we comprehensively evaluate the performances of Bowtie, BWA, mr- and mrsFAST, Novoalign, SHRiMP and SOAPv2, with regard to accuracy and runtime.

Thursday, April 7, 2011

SIMA: Simultaneous Multiple Alignment of LC/MS Peak Lists


Motivation: Alignment of multiple liquid chromatography/mass spectrometry (LC/MS) experiments is a necessity today, which arises from the need for biological and technical repeats. Due to limits in sampling frequency and poor reproducibility of retention times, current LC systems suffer from missing observations and non-linear distortions of the retention times across runs. Existing approaches for peak correspondence estimation focus almost exclusively on solving the pairwise alignment problem, yielding straightforward but suboptimal results formultiple alignment problems.
Results: We propose SIMA, a novel automated procedure for alignment of peak lists from multiple LC/MS runs. SIMA combines hierarchical pairwise correspondence estimation withsimultaneous alignment and global retention time correction. It employs a tailored multidimensional kernel function and a procedure based on maximum likelihood estimation to find the retention time distortion function that best fits the observed data. SIMA does not require a dedicated reference spectrum, is robust with regard to outliers, needs only two intuitive parameters and naturally incorporates incomplete correspondence information. In a comparison with seven alternative methods on four different datasets, we show that SIMA yields competitive and superior performance on real-world data.